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FACILITATED TRANSPORT THROUGH L I Q U I D  MEMBRANES 

E. S. Matulevicius  and Norman N.  L i  

Exxon Research and Engineering Company 
P. 0. Box 45 

Linden, New J e r s e y  07036 

ABSTRACT 

Liquid membranes, developed by L i , '  o f f e r  a new and 

e f f e c t i v e  means f o r  s e p a r a t i o n  of mixtures .  I n  o rde r  t o  maximize 

the  u t i l i t y  of t h i s  concept,  i t  i s  necessary t o  maximize the con- 

c e n t r a t i o n  g r a d i e n t  of t h e  d i f f u s i o n , s p e c i e s  a c r o s s  t h e  membrane. 

This  can be done i n  two ways: 

Type 1 f a c i l i t a t i o n  where the  concen t r a t ion  g r a d i e n t  is 

maximized by causing an  i r r e v e r s i b l e  r e a c t i o n  to  occur i n  the  

r ece iv ing  phase, thereby, maintaining the  permeate c o n c e n t r a t i o n  

e f f e c t i v e l y  z e r o  i n  t h a t  phase, and, 

Type 2 f a c i l i t a t i o n  where an  a d d i t i o n a l  s p e c i e s  i s  

added t o  t h e  membrane capable  of r e v e r s i b l y  r e a c t i n g  w i t h  t h e  

permeate, thereby,  i nc reas ing  t h e  concen t r a t ion  g r a d i e n t  by 

c a r r i e r  mediat ion.  

F a c i l i t a t i o n  of the f i r s t  type is i l l u s t r a t e d  f o r  t he  

c a s e  of phenol removal from water .  A model is presen ted  which 
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74 MATULEVICLUS AND LI 

descr ibes  the  overa l l  permeation process. The separat ion of 

hexane from heptane using cuprous amnonium ace ta te  a s  the 

membrane c a r r i e r  of hexane is used a s  an example of Type 2 

f a c i l i t a t i o n .  

INTRODUCTION 

The separat ion of mixtures using semipermeable membranes 

has been the  subjec t  of much academic i n t e r e s t  i n  the past  decade. 

However, t h i s  concept has not me t  with much success i n  i n d u s t r i a l  

appl ica t ions  s ince the polymeric membranes have general ly  

suffered from low f l u x  r a t e s  and low s e l e c t i v i t i e s . 2  

and s taging requirements become too grea t  f o r  any large sca le  

process. 

Thus, area 

An a l t e r n a t i v e  is t o  use l iqu id  films f o r  membranes. 

In  general, l iqu ids  possess much higher s e l e c t i v i t i e s  than poly- 

meric membranes, thereby reducing s taging requirements 

However, membrane systems based on t h i n  l i q u i d  f i lms have not 

been able  t o  overcome the cos ts  associated with achieving 

s u f f i c i e n t  area t o  make a s i g n i f i c a n t  impact i n  the separat ion 

area.  

comes t h i s  l i a b i l i t y  by generating the necessary surface area 

without the need f o r  mechanical support. 

The l iqu id  membrane concept, f i r s t  proposed by L i , '  over- 

I n  general, these l iqu id  membranes a r e  formed by f i r s t  

making an emulsion of two inmiscible phases and then dispers ing 

the emulsion i n t o  a th i rd  phase (continuous phase) by a g i t a t i o n .  

The l iqu id  separat ing the encapsulated phase of the emulsion and 
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TRANSPORT THROUGH LIQUID MEMBRANES 75 

the  continuous phase is  the  semipermeable l i q u i d  membrane. Thus, 

two miscible l i q u i d s  a r e  separated by an i m i s c i b l e  f i l m  which, 

because of the small drople t s  formed through a g i t a t i o n ,  provides 

a large a rea  f o r  permeation. Separation can readi ly  be achieved 

by s e l e c t i v e  d i f f u s i o n  of one component through t h i s  membrane 

phase i n t o  the l i q u i d  of lcwer concentrat ion.  Once separa t ion  is 

ef fec ted ,  the three phases can be separated f i r s t  by s e t t l i n g  the 

emulsion and continuous phase and then by breaking the emulsion 

(depending on process requirements, d i f f e r e n t  means other  than 

demulsif icat ion may be used t o  handle the used emulsion). 

The most e f f e c t i v e  use of the l iqu id  membrane process 

is achieved when the  f l u x  through the membrane phase and the 

capaci ty  f o r  the d i f f u s i n g  species  i n  the receiving phase a r e  

maximized. Techniques f o r  maximization of the flux and capac i ty  

a r e  the subject  of t h i s  paper. Br ie f ly ,  the  f l u x  r a t e  through the  

membrane phase can be achieved by maximizing the concentrat ion 

gradient  of the d i f fus ing  species  across  the film. This i s  

readi ly  achieved i n  two ways: 

Type (1): Minimization of the concentrat ion of the 

following species  i n  the receiving phase. This i s  normally done 

by reac t ing  the d i f fus ing  species  with some o ther  cons t i tuent  i n  

the receiving phase t o  form a product incapable of d i f f u s i n g  back 

through the membrane. For example, i n  the removal of phenol from 

water, the phenol d i f f u s e s  through a hydrocarbon membrane t o  a 

receiving phase of caus t ic  so lu t ion .  The phenol r e a c t s  with 

caus t ic  t o  form sodium phenolate which is insoluble  i n  t h e  hydro- 
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MArnEVICIUS AND L I  76 

carbon membrane and hence cannot d i f f u s e  back i n t o  the water 

phase from which the phenol is being removed. I n  t h i s  way, the 

concentrat ion of phenol i n  the receiving phase i s  low, thus, 

f a c i l i t a t i n g  i ts  passage through the hydrocarbon membrane.5p6p 

TVPe (2) :  Carrying the d i f fus ing  species  across  the 

membrane by incorporating "car r ie r"  compounds i n  the membrane. 

This concept of carrier-mediated t ranspor t  i s  i l l u s t r a t e d  i n  

Figure 1. Species A di f fuses  through the membrane both a s  

dissolved A and a s  product AX. Upon reaching the receiving phase, 

AX d i s s o c i a t e s  i n t o  A and X. Component A disso lves  i n t o  the 

receiving phase while X di f fuses  back t o  the other  s ide  of the 

membrane. Thus, concentrat ion gradients  shown i n  Figure 1 a r e  

set up i n  the  membrane phase. 

be several  orders  of magnitude higher than A i n  the  membrane 

phase, i t  can e a s i l y  b e  seen t h a t  t h e  f l u x  rate can be sub- 

s t a n t i a l l y  increased. 

PROPERTIES OF LIQUID MEMBRANES 

Since t h e  concentrat ion of AX can 

7,a,9 

As mentioned previously, l iqu id  membranes a r e  made by 

forming an emulsion of two immiscible phases and then dispers ing 

the emulsion i n t o  a t h i r d  phase (continuous phase). Usually, the 

encapsulated phase and the continuous phase a r e  miscible. The 

membrane phase must not be miscible with e i t h e r  i f  i t  is  t o  

remain s table . '  

or of water- in-oi l  type, depending on the nature  of the con- 

tinuous and encapsulated phases. To maintain the i n t e g r i t y  of the 

emulsion during the separat ion process, the membrane phase 

Therefore, the emulsion i s  of the oi l - in-water  
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TRANSPORT THROUGH LIQUID MEMBRANES 

FEED MEMBRANE 

I /  \ 

77 

RECEIVING PHASE 

A 

Figure  1. The Concept of  F a c i l i t a t e d  Transpor t .  

u s u a l l y  c o n t a i n s  s u r f a c t a n t s ,  a d d i t i v e s ,  and a base material which 

i s  a s o l v e n t  f o r  a l l  the o t h e r  i n g r e d i e n t s .  

a p p l i c a t i o n s ,  l i q u i d  membranes must be ta i lor-made.  

Hence, f o r  s p e c i f i c  

When t h e  emulsion is d i spe r sed  by a g i t a t i o n  i n  a con- 

t inuous phase ( t h e  t h i r d  phase) ,  many small g lobu les  of  emulsion 

a r e  formed. The i r  s i z e  depends s t r o n g l y  on t h e  na tu re  and con- 

c e n t r a t i o n  of the s u r f a c t a n t s  i n  the  emulsion, emulsion v i s c o s i t y ,  

and the  mode and i n t e n s i t y  of mixing. I n  most of our  l a b o r a t o r y  

runs,  t he  g lobu le  s i z e  is c o n t r o l l e d  i n  the  range of 0.1 t o  0.2 

mm i n  diameter .  Thus, a n  enormously l a r g e  number of g lobu les  of 

e m l s i o n  can  e a s i l y  be formed t o  produce equa l ly  l a r g e  membrane 

s u r f a c e  area f o r  r a p i d  mass t r a n s f e r  from e i t h e r  t he  cont inuous 

phase t o  t h e  encapsulated phase o r  v i c e  v e r s a .  It should be noted 

t h a t  many much sma l l e r  d r o p l e t s  approximately l p  i n  diameter  a r e  

encapsulated w i t h i n  each g lobu le .  6 
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MAATULEVICIUS AND L I  

The l a r g e  number of l i q u i d  systems from which l i q u i d  

membranes can be made r ende r s  t h i s  a n  extremely u s e f u l  process .  

It is a p p l i c a b l e  t o  aqueous and hydrocarbon s e p a r a t i o n s ,  which 

inc lude  a p p l i c a t i o n s  i n  waste water t r e a t ~ n e n t , ~ ’ ~ ’ ~ * ~  minerals  

r e c o ~ e r y , ~ ’ ~ ’ ~ ~ ~  and “ a r t i f i c i a l  kidney” t reatment .  

a l s o  be used i n  gas sepa ra t ions .  I n  the  l a t t e r  case. the  mem- 

brane system is a foam con ta in ing  a n  encapsulated gas  d i spe r sed  i n  

ano the r  gas  phase” or a l i q u i d .  ‘*‘13 

a p p l i c a t i o n  ( a r t i f i c i a l  lung) uses  a g a s / l i q u i d  l i q u i d  membrane 

system.” 

membrane system t o  inc rease  the f l u x  and c a p a c i t y  makes i t  t r u l y  

a n  e f f i c i e n t  and.genera1 s e p a r a t i o n  process .  For example, i n  

water t r e a t i n g ,  some of the  contaminants which can be sepa ra t ed  

by t h e  l i q u i d  membrane technique a r e : 6  

10 
It can 

The blood oxygenation 

In t roduc ing  va r ious  means of f a c i l i t a t i o n  t o  t h e  l i q u i d  

Organic Acids Cat ions Anions 

Phenol Cupr i c  S u l f i d e  

Ace t i c  Acid Mercuric N i t r a t e  

C i t r i c  Acid Ammonium Phosphate 

S i l v e r  Cyanide 

I n  t h i s  paper,  t he  removal of phenol from water w i l l  be used t o  

i l l u s t r a t e  t h e  f a c i l i t a t e d  t r a n s f e r  i n  a l i q u i d  membrane system 

by the use of a n  encapsulated r e a c t i v e  s o l u t i o n  (Type 1 

F a c i l i t a t i o n ) .  The s e p a r a t i o n s  of inorganic  compounds and/or  

ions from wa te r  and o l e f i n s  from p a r a f f i n s  can be r e a d i l y  

achieved us ing  ca r r i e r -med ia t ed  t r a n s p o r t  through, r e s p e c t i v e l y ,  

o i l - t y p e  and aqueous-type l i q u i d  membranes. It is  the  l a t t e r  case 
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TRANSPORT THROUGH LIQUID MEMBRANES 79 

which w i l l  be considered i n  more d e t a i l  i n  t h i s  paper t o  demon- 

s t ra te  t h e  ca r r i e r -med ia t ed  type of process  (Type 2 F a c i l i t a t i o n ) .  

PHENOL REMOVAL FROM AQUEOUS STREAMS - TYPE 1 FACILITATION 

1. Experimental  Procedure 

I n  a t y p i c a l  l a b o r a t o r y  experiment,  a w a t e r - i n - o i l  type 

of emulsion con ta in ing  a 0.5 pe rcen t  by weight NaOH s o l u t i o n  is 

f i r s t  made. A t y p i c a l  o i l - t y p e  l i q u i d  membrane could c o n t a i n  

Span-80 ( s o r b i t a n  monooleate) as t h e  s u r f a c t a n t ,  ENJ-3029 (poly- 

amine) as the membrane-strengthening a d d i t i v e ,  and SlOON ( i so -  

p a r a f f i n i c  o i l  w i t h  a n  average carbon number of 35) as the  

s o l v e n t .  5 ' 6 a 7 y 9  

a d d i t i v e s  i n  t h e  membrane phase u s u a l l y  a r e  q u i t e  low, such as 

w i t h i n  1 t o  5%. 

s o l v e n t .  The W/O emulsion is d i spe r sed  i n  a s imulated waste 

water phase con ta in ing  phenol i n  a mixer. A t  va r ious  times 

throughout t h e  tes t ,  a g i t a t i o n  is stopped and small samples of 

The concen t r a t ions  of t h e  s u r f a c t a n t  and the  

The balanced weight  pe rcen t  is t h a t  of  t h e  

t h e  cont inuous phase are withdrawn and analyzed.  Because the  

l i q u i d  membrane coa ted  drops coa le sce  when mixing i s  s topped,  

( thereby,  reducing d r a s t i c a l l y  t h e  t o t a l  membrane s u r f a c e  a r e a  f o r  

marr t r a n s f e r ) , t h e  amount of phenol d i f f u s i n g  i n t o  the  membrane 

d u r i n g  t h e  sampling per iod is n e g l i g i b l e .  The mixing is con- 

t inued u n t i l  most of t he  phenol is removed from the wa te r .  The 

r e s u l t s  of phenol removal vs .  t i m e  are then p l o t t e d  as shown i n  

F igu re  2.  

It should be noted t h a t  t he  s t r e n g t h  of c a u s t i c  i n  t h e  

emulsion i s  such t h a t  v i r t u a l l y  a l l  of t h e  phenol i s  r eac t ed  t o  
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80 MATULEVICIUS AND LI 

I I I I 

TIME (MIN.) 

Figure 2 .  Phenol Removal from H 0 .  
2 

sodium phenolate, i . e . ,  the concentration of phenol in the 

dispersed emulsion phase was e f f e c t i v e l y  negl ig ib le  throughout 

the experiment. Hence, the concentration driving force 

was maximized. Depending on process requirements, the concen- 

tration of the encapsulated NaOH solution can be much higher than 

0.5%. 
6 
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TRANSPORT THROUGH LIQUID MEMBRANES 81 

2 .  Discussion o f  Resu l t s  

A model d e s c r i b i n g  t h e  process  was constructed' '  w i t h  

the  fol lowing assumptions: 

1. The cont inuous wa te r  phase and emulsion a r e  w e l l  

mixed. 

2 .  The process  i s  a s s  t r a n s f e r  l i m i t e d  i n  the l i q u i d  

membrane phase. 

3. Each emulsion d r o p l e t  is an  agglomerate of r e a c t i v e  

d r o p l e t s  i n  a hydrocarbon phase. However, d i f f u s i o n  

of phenol i s  l i m i t e d ,  from g r a d i e n t  c o n s i d e r a t i o n s ,  

t o  the o u t e r  d r o p l e t s  only.  This  i s  e q u i v a l e n t  t o  

a l a r g e  membrane d r o p l e t  shown i n  F igu re  3. 

4. The emulsion d r o p l e t  remains i n t a c t  once formed. 

Using these  assumptions,  d i f f u s i o n  through the l i q u i d  membrane can 

be desc r ibed  by the fol lowing equa t ions :  

(1) 
a' 2 &  E = D (e + I a r )  

c = o  
i 

a t  r = R  

r > Ro 

I n i t i a l l y ,  r < Ro c = o  

r > Ro c = c  

c = c, 

r - Ro c = kc, 

m i  

Assuming a p a r t i c l e  s i z e  d i s t r i b u t i o n  f u n c t i o n  

il = fdRo N 
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TRANSPORT THROUGH LIQUID MEMBRANES a3 

where f is an unspecified d i s t r i b u t i o n  function, the above 

equations can be solved f o r  the case where the f i l m  thickness  

is much emaller than the aggregate radius .  

t h a t  

It can be shown 

aD 

M = 6 0 c exp (-qn 2 T )  

3 0 + 9 02 + qn 
n=l  2 (5) 

where qn = 3 0 co t  (9,) ( 6 )  

and 0 = constant  = funct ion of 

Ve/Vw, k, 8 ,  and f (7)  

Solutions for  Equations 5 and 6 a r e  shown i n  Figure 4. 

The phenol concentrat ion i n  the continuous phase is described by 

two parameters, the  Fourier  Mass Transfer Number, 7, and t h e  r a t e  

parameter, 0. For each experiment, constants  0 and 7 were 

determined by a t r ia l -and-error  technique.14 

very good agreement of some of the  data  with t h i s  model. 

Figure 5 shows 

I n  order t o  determine whether such a c o r r e l a t i o n  is 

for tu i tous ,  both the  volume of hydrocarbon membrane phase t o  

receiving phase and the composition of the hydrocarbon phase was 

var ied.  I n  t h i s  way, the membrane "thickness" d i s t r i b u t i o n  

c o e f f i c i e n t  of phenol, and the surface tension e f f e c t s  were 

changed making the  probabi l i ty  of chance c o r r e l a t i o n  r e l a t i v e l y  

remote. Under a l l  condi t ions,  the  c o r r e l a t i o n  proved accurate  

lending c r e d i b i l i t y  t o  the v a l i d i t y  of the model. 

2 The product, 3 0 D/b 

convention m e 8  t r a n s f e r  r a t e ,  K wherein 

can be d i r e c t l y  re la ted  t o  the 
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1 .o I 1 I I I I I I I I I 1  I I I I I 1  

LEGEND 
Membrone 

(Additive %) RPM 
0 1  250 
0 3  250 

350 
m 1  550 - 

I 

I I I ,  
0.5 1 .o 1.5 

T 

Figure 5. Phenol Extract ion from Water. 

T 

Figure 5. Phenol Extract ion from Water. 

J = K (AC) (8) 

I n  Figure 6, the r a t e  constant ,  K, is plo t ted  vs .  the s t i r r e r  

speed f o r  increasing membrane addi t ive  concentration. 

p l o t  is shown i n  Figure 7 f o r  the case of varying 

From these f igures ,  i t  can be seen t h a t  

A s imi la r  

the Ve/Vw r a t i o .  

K =  a RPd + b  (9) 

The c o e f f i c i e n t ,  a, i s  due t o  two fac tors ,  the 

s o l u b i l i t y  change of phenol i n  the hydrocarbon phase due t o  an 

increase i n  the membrane strengthening addi t ive  and, the  change 

i n  d ispers ion  of the  emulsion phase. It would be expected t h a t  

the s o l u b i l i t y  would increase with increase addi t ive .  However, 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
8
:
1
6
 
3
0
 
J
a
n
u
a
r
y
 
2
0
1
1



86 MATULEVICIUS AND LI 

N. 
0 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
8
:
1
6
 
3
0
 
J
a
n
u
a
r
y
 
2
0
1
1



TRANSPORT THROUGH LIQUID MEMBRANES 87 

1 

>v 

>' 
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Figure 7.  Rate va RPM f o r  Varying Ve/Vw. 

s ince the v i s c o s i t y  increases  with increasing addi t ive  (polyamine) 

the mean diameter of the emulsion should decrease. Separation of 

these e f f e c t s  a t  present is not possible  s ince no work was done 

on drop s i z e  d i s t r i b u t i o n .  

Since the power per u n i t  volume, P, necessary t o  

d isperse  the emulsion is proportional t o  RPM', t h i s  ind ica tes  t h a t  

KCY a P (10) 

Power per u n i t  volume is a common u n i t  t o  c o r r e l a t e  mixing 

13 processes. This ind ica tes  t h a t  the amount of i n t e r n a l  c i rcu-  

l a t i o n  with the  emulsion droplet  i s  r e l a t i v e l y  small compared t o  

the o v e r a l l  r a t e  process. For i f  i t  were not, a much higher 

c o e f f i c i e n t  than 3 i n  Equation 9 would be expected. Therefore, 

the  assumption t h a t  the r a t e  l imi t ing  s t e p  is di f fus ion  of phenol 

t o  the ex terna l  layer  of drople t s  i n  the  emulsion globule is 
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aa MATULEVICIUS AND L I  

va l id .  Thus, Type 1 f a c i l i t a t i o n  occurs when the concentrat ion 

gradient  of the d i f fus ing  species  between continuous phase and 

receiving phase is maximized by i r r e v e r s i b l e  chemical reac t ion  i n  

the receiving phase. 

This example i l l u s t r a t e s  tha t  the  l iqu id  membrane 

process can be character ized i n t o  a d i f fus ion  process i n t o  r i g i d  

spheres of some s i z e  d i s t r i b u t i o n ,  f .  T h i s  can be the b a s i s  of 

engineering process scale-up. The model seemingly does not take 

i n t o  account parameters such as the "well mixedness" of the reactor  

nor the var ious f i lm res i s tances  t o  mas t ransfer .  However, much 

of t h i s  i s  accounted i n  the parameter, 0 ,  of Equation 7 .  

THE SEPARATION OF HEXENE FROM HEPTANE - TYPE 2 FACILITATION 

1. Description 

The separat ion of o le f ins  from paraf f ins  i s  used a s  an 

example of Type 2 F a c i l i t a t i o n .  Here, a c e r t a i n  addi t ive  

(Cuprous ammonium ace ta te )  is added t o  the aqueous membrane phase 

which reac ts  s e l e c t i v e l y  wi th  the  o l e f i n  t o  form weak complexes. 

The purpose is t o  increase the e f fec t ive  s o l u b i l i t y  of the o l e f i n  

i n  the membrane phase and thus promote i t s  t r a n s f e r  r a t e  through 

the membrane. 

I n  general, the so lubi l iz ing  addi t ive  or complexing 

agent se lec ted  should be soluble  i n  the  aqueous l i q u i d  sur fac tan t  

membrane and not subs tan t ia l ly  soluble  i n  e i t h e r  the  organic 

solvent  or the organic feed phases. It a l s o  should be chosen t o  

be compatible with the sur fac tan t  s ince i t  is imperative tha t  the 

so lubi l iz ing  addi t ive  and the sur fac tan t  do not i n t e r a c t  t o  
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TRANSPORT THROUGH LIQUID MEMBRANES 89 

s u b s t a n t i a l l y  weaken the l iqu id  sur fac tan t  membrane. That is, 

the  sur fac tan t  should not r e a c t  with the addi t ive  t o  destroy the  

e f fec t iveness  of the membrane. For example, e s t e r  or  e ther- type 

sur fac tan ts  w i l l  be hydrolyzed with s t rong basic  or  acid 

add i t  ives . 8 

Several complexing addi t ives  can be used t o  separate  

var ious organic mixtures. Examples of some successful  systems 

are given i n  Table 1. Complexing addi t ives  f o r  separat ing 

inorganic mixtures w i l l  be discussed i n  d e t a i l  i n  fu ture  papers. 

I n  general, the  separat ions of inorganic compounds or  ions from 

t h e i r  aqueous so lu t ions  can be achieved by using o i l - type  l i q u i d  

membranes containing s u i t a b l e  complexing agents or c a r r i e r s .  PH 

d i f fe rence  across  the membrane can be used a s  the  dr iving force 

f o r  the s e l e c t i v e  permeation or ion exchange involved. It 

should be noted t h a t  i n  such a membrane system, descr ibing 

s p e c i f i c  s o l u t e s  permeating "against t h e i r  concentrat ion gradien t"  

o r  "pumping" could be confusing.16 It is t rue  t h a t  the s p e c i f i c  

so lu tes  a r e  concentrated from a d i l u t e  ex terna l  aqueous phase t o  

a much higher concentrat ion i n  the  aqueous phase on the other  s i d e  

of the membrane. However, i t  i s  best  to  p ic ture  t h i s  happening 

because of favorable e q u i l i b r i a  being es tab l i shed  a t  the  two 

in te r faces  (by s u i t a b l e  adjustments of pH or displacing ion con- 

cent ra t ion) ,  which w i l l  then allow the so lu te  t o  d i f f u s e  across  

the membrane along i t s  normal concentrat ion gradient .  Transfer  

across  the  in te r faces  occurs due t o  differences in chemical 

po ten t ia l .  The c a r r i e r ,  therefore ,  not only serves  t o  move the 
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90 MATULEVICIUS AND LI 

ion across  the  membrane along i t s  normal concentrat ion gradient ,  

but a l s o  allows the desired e q u i l i b r i a  t o  be es tab l i shed  a t  the 

respect ive in te r faces .  

It should be noted t h a t  the  conventional i n t e r p r e t a t i o n  

of f a c i l i t a t e d  t r a n s f e r  r e f e r s  t o  t h e  Type 2 f a c i l i t a t i o n  

described here. I n  other  words, i t  is for  the s i t u a t i o n  where a 

c a r r i e r  is added t o  the membrane phase t o  s u b s t a n t i a l l y  increase 

the f lux  across  the membrane beyond t h a t  a t t r i b u t a b l e  t o  purely 

molecular d i f fus ion .  

I n  order t o  i l l u s t r a t e  the Type 2 f a c i l i t a t i o n ,  a 50 

weight percent mixture of hexene and heptane was used as a model. 

This mixture was emulsified with an aqueous phase containing 

various amounts of cuprous ammonium ace ta te .  The aqueous phase 

formed a t h i n  l iqu id  f i lm around the  hexene/heptane mixture 

through which the hexene and heptane could d i f fuse .  

was then mixed with a n-octane phase. Per iodica l ly ,  samples of 

the n-octane phase were removed and analyzed f o r  the amount of 

heptane/hexene present. 

been described elsewhere.8 

n-octane phase t o  the r a t i o  of hexene t o  heptane i n  the i n t e r i o r  

of the emulsion phase was computed. The separa t ion  f a c t o r  a8 a 

funct ion of increasing cuprous amonium a c e t a t e  concentrations is 

shown i n  Table 2 .  

The emulsion 

The d e t a i l  experimental condi t ions have 

The r a t i o  of hexene t o  heptane i n  the 
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TRANSPORT THROUGH LIQUID MEMBRANES 91 

TABLE 1 

Solubi l iz ing Additives i n  Liquid Membranes t o  
F a c i l i t a t e  Transfer  of Organic Compounds 

So1ubilizin.q Additive 

Cuprous aunmnium a c e t a t e  

Sul fur ic  Acid 

Thiourea 

Acetoni t r i le  

N-me thylpyrrol id  ine 

Strong base 

Strong base 

Sul fur ic  Acid 

Weak Acids 

Feed Component 

C1-Cl0 Diolef ins  o r  o l e f i n s  

C6-C20 Aromatics 

C1-Cl0 Olef i n s  

C1-Cl0 Diolef ins  

C1-Cl0 Diolefins 

a-Acetylenes 

C1-Cl0 Mercaptans 

C1-Cl0 Olefins 

C1-Cl0 Amines 

TABLE 2 

Separation of Hexene from Heptane 

Concentration of Cuprous 
Ammonium Acetate i n  Separation Factor  of 

Liquid Membrane 1-Hexene from n-Heptane 

0 2.9 

15 

50 

7.6 

14.6 
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MATULEVICIUS AND LI 

2 .  Discussion of Results 

Cuprous ammonium a c e t a t e  complexes revers ib ly  with the 

o le f in .  Hence, the o l e f i n  d i f fuses  across  the aqueous membrane 

i n  both the  complexed f o r m e  the dissolved form while the 

paraf f in  d i f fuses  across  a s  the dissolved species  only. The in- 

creased d i f f u s i v i t y  increases  the mass t r a n s f e r  r a t e  of hexene 

and consequently, the  s e l e c t i v i t y .  Thus, t h i s  "Type 2 f a c i l i -  

t a t i o n "  can s u b s t a n t i a l l y  increase the u t i l i t y  of the process by 

making aqueous membranes very much more s e l e c t i v e  than possible  

from di f fe rences  in physical s o l u b i l i t y .  

In  a c t u a l  processes, the feed mixture of o l e f i n /  

p a r a f f i n  can be emulsified i n  an aqueous cuprous ammonium a c e t a t e  

so lu t ion  and then mixed i n  a continuous phase of another solvent  

i n  a manner analogous t o  the phenol ex t rac t ion  case described 

previously. However, the mathematical ana lys i s  of such a process 

is  s u b s t a n t i a l l y  more complex because the d i s t r i b u t i o n  coef f ic ien ts  

i n  both the encapsulated phase and continuous phase must be known 

2 a s  w e l l  a s  the parameters 0, D/8 . Further complexity is  in t ro-  

duced by the f a c t  t h a t  the cuprous arnonium acetate-hexene 

equi l ibr ium is not l i n e a r  with concentration. Hence, t h i s  

resu l t ing  non-l inear i ty  of the "effect ive s o l u b i l i t y "  would com- 

p l i c a t e  the model subs tan t ia l ly ,  hence, making mathematical t r e a t -  

ment exceedingly d i f f i c u l t .  However, the t r u e  s e l e c t i v i t y ,  i .e . ,  

the r a t i o  of mass t r a n s f e r  r a t e s  of hexene and heptane must be 

determined by such an ana lys i s .  Without such a solut ion,  a more 
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simple case, tha t  of d i f f u s i o n  from s ingle  drops, was chosen 

here t o  i l l u s t r a t e  the e f f e c t  of Type 2 f a c i l i t a t i o n .  

CONCLUSIONS 

The l i q u i d  membrane process i s  a very v e r s a t i l e  

separa t ion  process capable of separat ion i n  a wide range of l i q u i d  

mixtures. However, i n  order t o  maximize i t s  u t i l i t y ,  i t  is 

necessary t o  maximize the f lux  r a t e  of one cons t i tuent  by a 

process of f a c i l i t a t i o n .  I n  cases  where separa t ion  is t o  be 

a f fec ted  by the  permeate's s o l u b i l i t y  i n  the encapsulated phase, 

e.g., removal of phenols from water, the incorporation i n  the 

receiving encapsulated phase of a reac t ive  species  capable of 

reac t ing  with the permeate w i l l  ensure maximum mass t r a n s f e r  

r a t e s .  Furthermore, the ex ten t  of removal is enhanced s ince  much 

more of the permeate can be removed before the concentrat ion 

dr iving force vanishes. I n  cases where such a reac t ive  system 

f o r  the encapsulated phase is not ava i lab le  or where the r a t i o  of 

s o l u b i l i t i e s  of the various cons t i tuents  i n  the membrane a re  low,  

a reac t ive  component or  c a r r i e r  can be added t o  the membrane phase 

which can s e l e c t i v e l y  r e a c t  with one cons t i tuent  of the mixture, 

thereby, increasing the "effect ive s o l u b i l i t y "  of tha t  con- 

s t i t u e n t .  Hence, e f f i c i e n t  separat ion can be achieved. 

The d i f fus ion  model developed f o r  phenol removal was 

shown t o  be e f f e c t i v e  i n  c o r r e l a t i n g  the da ta .  A wide range of 

experiments have shown t h a t  mass t r a n s f e r  r a t e s  can be cor re la ted  

e f f e c t i v e l y  with the power imput per u n i t  volume. These provide 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
8
:
1
6
 
3
0
 
J
a
n
u
a
r
y
 
2
0
1
1



94 MATULEVICIUS AND LI 

the bas ie  f o r  engineering evaluat ion and scale-up of the process 

f o r  a given appl icat ion.  

8 

b 

C 

cap 

I 

D 

f 

J 

k 

K 

L 

M 

n 

N 

P 

qn 

r 

Ri 

RO 

t 

constant  = funct ion of concentration of membrane addi t ive ,  

sec . 
constant  

concentrat ion of permeate i n  membrane, mols/cm 

concentrat ion of permeate i n  continuoue phase, mols/cm 

initial concentrat ion of permeate i n  continuous phase, 

mol s / cm 

-1 

3 

3 

3 

2 d i f f u s i v i t y  of permeate i n  membrane phase, cm /sec 

drop s i z e  d i s t r i b u t i o n  funct ion 

f lux  r a t e  of permeate i n t o  membrane, mols/sec cm 

s o l u b i l i t y  of permeate i n  membrane phase cn?/cm3 

mass t r a n s f e r  coef f ic ien t  = 3 0 D / a 2 ,  sec 

impeller diameter 

r a t i o  of concentrat ion i n  continuous phase a t  time, t ,  t o  

i n i t i a l  concentration, cm/c 

number of drops of radius  Ro 

t o t a l  number of drops of emulsion 

power input  per u n i t  volume, Kw/sec 

eigen value defined i n  Equation 6 

radius ,  cm 

i n t e r n a l  emulsion drop radius ,  cm 

externa l  emulsion drop radius ,  crn 

t i m e ,  eec 

3 

-1 

m i  
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3 Ve volume of emulsion, c m  

Vw 

6 equ iva len t  membrane thickness ,  cm 

3 volume of cont inuous phase, c m  

0 rate cons t an t  = f u n c t i o n  of v e s  Vws R, Fs b 

T F o u r i e r  Mass Trans fe r  Number, D t / b 2  
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